

engineers | scientists | innovators

Phytoremediation Feasibility for Brownfield Sites

Shanna Thompson, P.E. Georgia Brownfield Association April 19, 2018

Overview

- Applicability to Brownfield Site Redevelopment
- What is Phytoremediation?
- Why Use Phytoremediation?
- Engineered systems: TreeWell System
- Case study

Applicability to Brownfield Redevelopment

- Soil remediation is commonly completed prior to brownfield reconstruction, but groundwater remediation can take years
- Groundwater remediation systems take many forms:

1. Many have mechanical aboveground components that operate 24/7/365,

2. Some mimic portable chemical mixing plants,

 Others can be more discreet (e.g. barrier walls, phytoremediation)

Geosyntec[>]

Applicability to Brownfield Redevelopment

- Operations & Maintenance (O&M) of mechanical or chemical injection systems can be intrusive
- For some sites, intrusive remediation O&M is an is an issue

Geosyntec^D

- Phyto O&M:
 - makes less noise than most systems
 - makes less waste than most systems
 - requires less frequent O&M site visits
- As a best practice, phyto design can be planned in conjunction with the developers
 - Optimize placement of buildings and remediation vegetation areas
 - Resource for landscape designers: K. Krennan and N. Kirkwood. 2015. Phyto: Principles and Resources for Site Remediation and Landscape Design

What is Phytoremediation?

What is it?

 Use of plants to degrade or contain contaminants from groundwater, soil, sediments and surface water

Mechanisms:

- Phytosequestration
 - Sequester contaminants in root zone (containment)
- Rhizodegradation
 - Microbial biodegradation within root zone (remediation by destruction)
- Phytohydraulics
 - Capture and evaporate water (containment)
- Phytoextraction
 - Uptake of contaminants into plant (remediation by removal)
- Phytodegradation
 - Uptake and breakdown of contaminants (remediation by destruction)
- Phytovolatilization
 - Uptake and transpire volatile contaminants (remediation by removal)

engineers | scientists | innovators

Geosyntec[>]

Image: ITRC Phytotechnology Guidance (2009)

Why Use Phytoremediation?

Example contaminants – Petroleum hydrocarbons, CVOCs, Metals, MTBE, 1,4-Dioxane

Why use it?

- "Green & Sustainable" vs other more conventional technologies
- Low carbon foot print
- Potentially much lower cost than other treatment technologies
- Proven long-term track record when designed and implemented correctly
- Well accepted by regulatory community
- Improves with time (trees grow larger, use more water)
- Aesthetically pleasing

Engineered Phytoremediation: The *TreeWell* System

- Active treatment in a passive manner
- Targets <u>specific</u> groundwater by directing root growth downward to capillary fringe

Geosyntec[>]

- Groundwater is drawn upward through the soil column, then absorbed by plant roots
- Bioreactor effect both oxidizing and reducing zones in each unit
- Increases soil temps enhances biodegradation rates in vadose zone
- Patented, but available for use via specific contractors

Engineered Phytoremediation: The "Straw" *TreeWell* Unit

"Straw" TreeWell Design

- Targets deep confined aquifers
- Overcomes constructability challenges of shallower water-bearing zones above the aquifer of interest
- Hydraulic head drives target groundwater into the TreeWell unit through the double-screened "straw" piezometer

Case Study: Central FL 1,4-Dioxane in Groundwater

Geosyntec^D consultants

Site Background

- Fractured bedrock aquifer 5'-15' bgs
- Contaminant flux in a thin fractured zone from 10 - 15' bgs
- Initial Remedy: Long-term pump & treat system with UV/Peroxide
 - >\$300K/Year O&M costs
 - >10 Years to meet Remedial Goals

Remedial Goals

- Hydraulic Control
- Contaminant Treatment

Case Study: System Installation

2013 Installation

Geosyntec Consultants

- 154 Units Installed
- 48" Borehole Drilled to 15' bgs
- · Set liner system to top of impacted zone
- Plantings set 20 feet on center
- Native trees:
 - Slash Pine (Pinus elliottii)
 - Sycamore (Platanus occidentalis)
 - Willow (Salix caroliniana)
 - Pond Cypress (Taxodium ascendens)

Case Study: Impact on Groundwater Flow

- <u>Yellow</u> = initial GW flow (towards site boundary)
- Blue = GW flow <u>18 months</u> <u>after</u> Engineered Phyto System installed (gradient reversal/ hydraulic control; flow towards the Phyto System)
- GW Flow results have been consistently positive:
 - Some changes in flow were seen in the first season
 - By the end of the second season, groundwater flow had reversed

Demonstration of hydraulic capture enabled shutdown and decommissioning of the existing P&T system.

Case Study: Monitoring Data

Case Study: Cost Savings of Phytoremediation

Geosyntec consultants

Note: Cost estimate provided by client

Summary of Key Phyto Benefits

 Phyto can reduce contaminant concentrations and change groundwater gradients when applied with engineered design

Geosyntec^D

- Highly adaptable to specific site conditions and contaminants
- Applicable to many contaminants even at high concentrations
- Applicable to many sites even in cold climates
- A viable alternative to many P&T systems, using *TreeWell* technology
- Potential of significant cost-savings over conventional treatment options
- Stand-alone, green & sustainable technology

Thank You Shanna Thompson, P.E. <u>SThompson@Geosyntec.com</u> 678-202-9589

