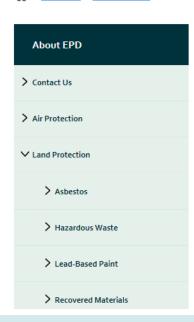


Land Branch Technical Guidance Updates


David Hayes Voluntary Remediation Unit Manager

Georgia Brownfield Association Workshop February 28, 2020

About EPD > Land Protection > Technical Guidance

Land Protection Branch Technical Guidance

General Topics

- *Draft* <u>Area Averaging Approach to Soil Cleanups</u> Public Comments Under Review
- FAQs for Evaluating the Soil-to-Groundwater Pathway
- Groundwater Contaminant Fate & Transport Modeling
- Vapor Intrusion
- Guidance for Demonstrating Completion of Soil Removal Actions at Corrective Action Sites

GUIDANCE OVERVIEW

- Soil-to-Groundwater Migration Pathway (a.k.a. leaching)
- Area Averaging Approach to Soil Compliance for Direct Contact Exposure Scenarios
- Vapor Intrusion

WHY DEVELOP GUIDANCE?

- Provide technical assistance to stakeholders
- Provide for streamlined EPD review
- Promote consistency

AREA AVERAGING UPDATE

DRAFT GUIDANCE:

"Area Averaging Approach to Soil Compliance for Direct Contact Exposure Scenarios"

Land Protection Branch

Hazardous Waste Corrective Action Program Hazardous Waste Management Program Response & Remediation Program Risk Assessment Program

AREA AVERAGING UPDATE

Draft Guidance Public Comment Period

Comments Received

Workgroup Assembled to Address Comments

Guidance Restructured & Revised

New Review Process

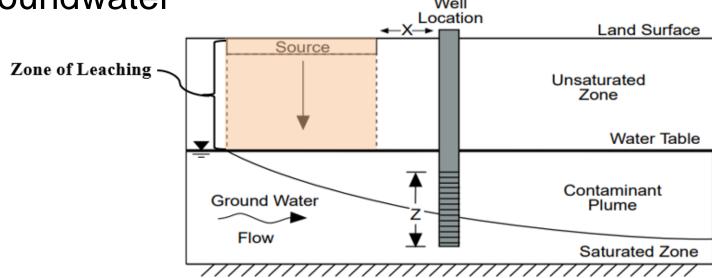
AREA AVERAGING UPDATE

- Revised draft undergoing EPD management review
- Revised draft will be posted on EPD website
- New public comment / stakeholder engagement period

VAPOR INTRUSION UPDATE

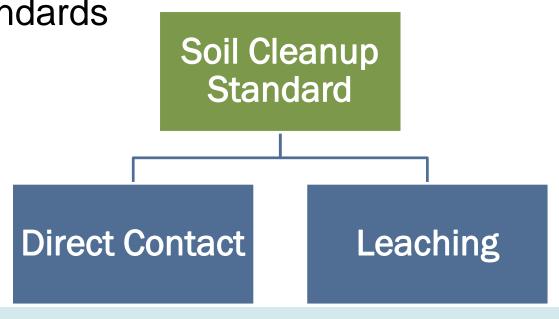
- Technical Advisory Committee approach
- Draft undergoing EPD management / Advisory Committee review
- Public comment / stakeholder engagement period following release of draft guidance

Leaching Guidance Overview


David Hayes Voluntary Remediation Unit Manager

Georgia Brownfield Association Workshop February 28, 2020

WHAT IS LEACHING?


Migration of contaminants from soil to groundwater

IMPORTANCE OF LEACHING EVALUATION

Exposure pathway evaluated to determine soil cleanup standards

HOW IS LEACHING EVALUATED?

- Model
- Laboratory leaching test
- Observation-based approach (e.g., old soil release but no groundwater impacts)

STAKEHOLDER ENGAGEMENT

- Oct. 2018: draft document posted for public comment
- Dec. 2018: GIEC Workshop / Roundtable
- Jan. March 2019: formal comments received
 - GIEC, Ashland, & GBA
- May 2019: meetings with stakeholder groups
- May Oct. 2019: revisions to document

NOTABLE UPDATES

- Key Terms Section
- Removed Question 2: When is an evaluation required?
- Soil Saturation Limit (e.g., PCE C_{sat} = 170 mg/kg)
- Adjust extraction fluid pH for SPLP test
- EPA RSL Calculator
- EPA Mass Limit Equation
- Revised Question 9: How are measured soil concentrations compared to protective levels?

DOCUMENT OVERVIEW

- Frequently Asked Questions format
- Partition Equation (basic model) $C_t = C_w \left(K_d + \frac{\theta_w + \theta_a H'}{\rho_b} \right)$
- Leaching tests (TCLP, SPLP)
- Recommendations for data collection and reporting
- Analysis of leaching test results
- Models
- Comparing soil concentrations to leaching values
- Observation-based approach

Select Scenario	
Resident Indoor Worker Outdoor Worker Composite Worker (presented in Gener Construction Worker (Site Specific only) Soil to Groundwater Recreator (Site Specific only)	
Select Media:	
Soil Air Tapwater	
Select Screening Level Choice	
Defaults Site Specific	
Select Chemical Info Type:	
Database hierarchy defaults User-provided	

User-provided Inputs

Change or remove any of the following parameters. The master database will not be used.

 $\begin{array}{c} \text{enter} \\ \text{site-specific } K_{\text{d}} \end{array}$

enter acceptable groundwater concentration

Regional Screening Levels (RSLs)

- · Home Page
- · User's Guide
- What's New
- Frequent Questions
- Equations
- RSL Calculator
- Generic Tables

				Fraction of			
	Organic Carbon	Soil-Water	Skin	Chemical that	Maximum		
	Partition	Partition	Permeability	is ultimately	Contamination	Water	
	Coefficient	Coefficient	Constant	absorbed	Limit	Solubility	Volatile
Chemical	Koc (L/kg)	K _d (cm ³ /g)	K _p (cm/hr)	FA (unitless)	MCL (μg/L)	S (mg/L)	Compound?
Tetrachloroethylene	9.49E+01		3.34E-02	1	5.00E+00	206	Yes ▼

Dilution Factor for Migration to Groundwater Equations and Parameters

Dilution Attenuation Factor

K (aquifer hydraulic conductivity) m/yr
L (source length parallel to ground water flow) m
d (mixing zone depth) m - site-specific
d _a (aquifer thickness) m - site-specific

1	DAF (dilution attenuation factor) unitless			
	i (hydraulic gradient) m/m			
0.18	I (infiltration rate) m/yr			

NOTES:

- 1. If DAF is known, enter it, or enter your own site-specific values to calculate it.
- 2. When DAF is entered or calculated, the values for the blue DAF box in the Migration to Groundwater section below will be populated. If DAF is not entered or calculated, the default value will be used.

Migration to Groundwater Common Parameters DAF (dilution attenuation factor) unitless 1.5 ρ_k (dry soil bulk density) kg/L Method 1 - Partitioning Method 2 - Mass Limit NOTES: 1. If DAF is known, enter it in the Dilution Factor section above. When DAF is entered or calculated in the section above, the value for the blue DAF box in this section will be populated. If DAF is not entered or calculated, the default value will be used. 2. The Partitioning Equation for Migration to Ground Water is used by default. To use the Mass-Limit Equation, select the Method 2 Equation toggle and enter the parameters below. ↑ Top of Page **Partitioning Equation and Parameters** H Determination at Temperature other than 25 degrees Celsius Method 1 θ_a (air-filled soil porosity) L_{air}/L_{soil} foc (fraction organic carbon in soil) g/g 0.002 0.434 n (soil porosity) L_{pore}/L_{soil} 0.3 θ_w (water-filled soil porosity) L_{water}/L_{soil} ρ_e (soil particle density) kg/L 25 T,,, (groundwater temperature) °Celsius 2.65

- PCE in soil
- Approved values for:
 - Protection of Direct Contact = 81 mg/kg
 - Type 2 RRS for groundwater = 41 ug/L
- Extent of contamination is less than 0.5 acre
 - Use DAF = 20

User-provided Inputs

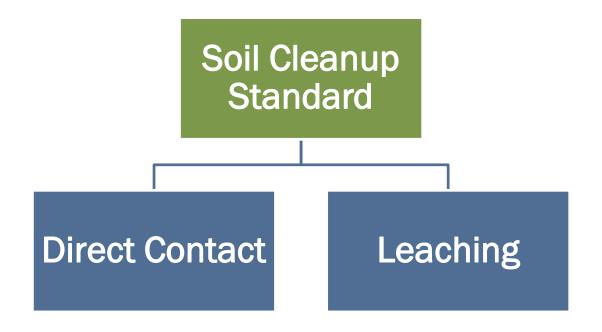
· Change or remove any of the following parameters. The master database will not be used.

(RSLs)

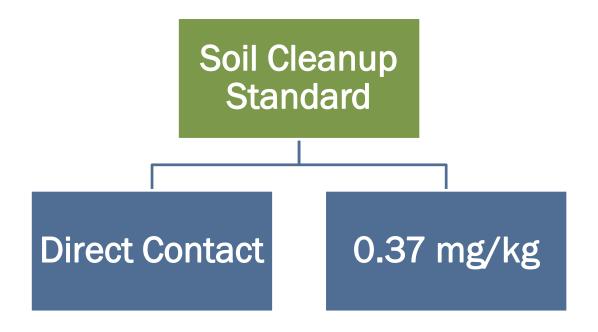
- Home Page
- User's Guide
- · What's New
- Frequent Questions
- Equations
- RSL Calculator
- Generic Tables

Chemical	Organic Carbon Partition Coefficient Koc (L/kg)	Soil-Water Partition Coefficient K _d (cm ³ /g)	Skin Permeability Constant K _p (cm/hr)	Fraction of Chemical that is ultimately absorbed FA (unitless)	Maximum Contamination Limit MCL (μg/L)	Water Solubility S (mg/L)	Volatile Compound?
Tetrachloroethylene	9.49E+01		3.34E-02	1	41	206	Yes ▼

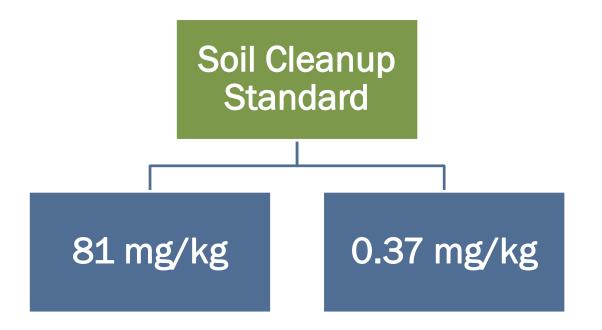
Dilution Factor for Migration to Groundwater Equations and Parameters								
<u>Dilution Attenuation Factor</u>								
. K (aquifer hydraulic conductivity) m/yr . L (source length parallel to ground water flow) m d (mixing zone depth) m - site-specific d _a (aquifer thickness) m - site-specific NOTES: 1. If DAF is known, enter it, or enter your own site-specific values to calculate the conductivity of the conductivity o	DAF (dilution attenuation factor) unitless i (hydraulic gradient) m/m 0.18 I (infiltration rate) m/yr							
	n the Migration to Groundwater section below will be populated. If DAF is Top of Page							
Migration to Groundwater Common Parameters								
DAF (dilution attenuation factor) unitless Method 1 - Partitioning Method 2 - Mass Limit	1.5 $\rho_{b} (\text{dry soil bulk density}) \text{kg/L}$							

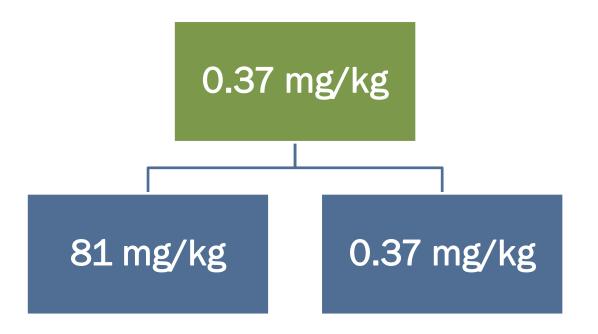

Site-specific

Regional Screening Levels (RSL) for Soil to Groundwater


Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; G = see user's guide; U = user provided; ca = cancer; nc = noncancer; * = where: nc SL < 100X ca SL; ** = where nc SL < 10X ca SL; SSL values are based on DAF=1; max = ceiling limit exceeded; sat = Csat exceeded.

	rcinogenic SL TR=1E-05 (ug/L)	Water Concentration (Adult) (mg/L)	Water Concentration (Child) (mg/L)	Water Concentration (Cancer) (mg/L)	Maximum Contaminant Level (MCL) (ug/L)	Water Concentration (MCL) (mg/L)	MCL-based SL (mg/kg)
Tetrachloroethylene l3	3E+02	1.01E+00	8.12E-01	2.26E+00	4.10E+01	8.20E-01	3.73E-01





SUMMARY

- Partition Equation
- Mass Limit Equation
- More consistency for leaching test data / interpretation
- Observation-based approach
- SSG Averaging Concepts

QUESTIONS & COMMENTS

David Hayes david.hayes@dnr.ga.gov 404-657-8672